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A cellular automaton model of steady-state 
columnar-dendritic growth in binary alloys 
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A two-dimensional cellular automaton model has been developed to examine the evolution 
and coarsening behaviour of solid-solution dendrites during steady-state columnar freezing. 
Using an empirical rule to account for interface growth, realistic dendrite geometries were 
obtained for different assumed compositions and process conditions. Coarsening occurred 
by a coalescence mechanism associated with bridging of adjacent dendrite arms. 

1. Introduction 
Research and commercial finite element/finite differ- 
ence codes are now well established for the numerical 
simulation of conductive heat transfer and freezing in 
alloys for a variety of solidification processes, includ- 
ing casting, welding and directional solidification. 
Some packages, with limited success, can also handle 
fluid flow and associated thermal transport prior to 
and during solidification and, also, include radiative 
heat transfer. The most widely used commercial pack- 
ages are those for the modelling of casting processes 
and several hundred have now been installed world- 
wide in foundries and research organizations. Consid- 
eration of these packages and of examples of their 
application has recently been the subject of three ma- 
jor surveys carried out in Japan [1], Europe [2] and 
the USA [3]. Although simulation software holds the 
potential for the prediction of a whole range of solidifi- 
cation features, including microstructure evolution, 
segregation and the formation of defects such as pores, 
current limitations relating to the incorporation of 
descriptions of microscopic behaviour restrict the ap- 
plication of most packages to the prediction of macro- 
phenomena. Most packages are presently employed to 
predict the macro-freezing patterns of castings and to 
identify if isotherms form closed loops around still 
solidifying voiumes. Such isolation gives rise to mac- 
roshrinkage defects. 

The assumptions in the majority of numerical sol- 
idification simulation packages of casting, excluding 
those that specifically incorporate a micro-macro 
model of equiaxed growth, imply that freezing occurs 
in a columnar fashion, irrespective of the composition 
and freezing range of the alloy, i.e. continuous growth 
of grains from the mould/die walls in a direction 
opposite to the principal heat-flow direction. This 
arises because nucleation is ignored and growth is 
assumed to commence when the local temperature 
falls to the equilibrium liquidus value. In alloys that 
freeze over a temperature range, the primary phase 
grains are frequently dendritic. Columnar-dendritic 

growth will only take place in practice in dilute alloys, 
in the absence of grain refiners, and is encouraged by 
high pouring temperatures. 

Often, however, the dendritic grain structures of the 
primary phase are equiaxed. Equiaxed grains nucleate 
and grow in supercooled liquid, the rates at which 
both occur being temperature dependent. Although 
so-called micro-macro numerical models of equiaxed 
grain growth have been reported [4, 5], which couple 
a macro-heat-transfer model with a micro-model of 
equiaxed grain nucleation and growth, the models still 
do not encapsulate the essential aspects of equiaxed 
grain formation. Spittle and Brown [6, 7] were the 
first to demonstrate, using a qualitative cellular au- 
tomaton model, the range of factors that need to be 
simulated by models in order to predict grain-struc- 
ture evolution. These include nucleation, solute redis- 
tribution on freezing (together with associated grain- 
growth restriction and melt undercooling), grain and 
heat transfer due to fluid flow and, grain remelting in 
superheated liquid. ' 

A major limitation of numerical models of cast 
alloys solidifying over a temperature range, whether 
they are of the columnar or equiaxed freezing type, 
is their failure to simulate directly the solute redis- 
tribution on freezing and related microstructural phe- 
nomena. Solute redistribution, in conjunction with the 
solidification conditions, will determine the grain 
structure of a casting, the scale of the dendrite arm 
spacing (which in turn will influence interdendritic 
pore formation and the permeability of the solid 
+ liquid region), the pattern ofmicrosegregation and 

the amount of eutectic. At the present time, in macro- 
heat-transfer models, solute partitioning and diffusion 
during dendritic freezing are not modelled directly. In 
most commercial software, solute redistribution is 
dealt with by the incorporation of analytical models, 
which relate fraction solid to temperature, based on 
assumed conditions controlling solute transport dur- 
ing freezing. The two most common analytical models, 
which also define the extreme limits regarding the 
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Figure 1 A two-dimensional cellular automaton simulation of steady-state dendritic growth for a hypothetical alloy containing 0.07% solute 
grown at a reference growth rate with a reference temperature gradient: (a) the dendritic (white), eutectic (grey) and liquid (black) portions, and 
(b) a microsegregation map. 

possible extent of microsegregation, are the equilib- 
rium freezing model and the Scheil model [8]. The 
first assumes complete solute diffusion in the solid and 
complete mixing of the liquid throughout freezing, the 
second assumes no diffusion in the solid and complete 
mixing of the liquid. Several other analytical models 
have been developed, representing modifications of 
the basic Scheil model, which variously take into ac- 
count "back diffusion" of the solute into the solid 
during freezing, dendrite tip undercooling and den- 
dritic arm coarsening [9-12]. 

In the case of current numerical macro-heat-trans- 
fer models of columnar-dendritic freezing, a fraction 
solid versus temperature relationship is often em- 
ployed to specify the rate of rejection of latent heat at 
locations throughout the casting. The limitation, of 
the modified versions of the Scheil solute redistribu- 
tion model, is that they are unable to anticipate accu- 
rately the influences of interface undercooling and 
back diffusion on solute distribution under conditions 
where the dendrite structure is continuously evolving 
and coarsening and where the local solidification con- 
ditions are continuously changing. 

A number of microscopic numerical models for pre- 
dicting microsegregation in binary dendritic struc- 
tures have also been reported [13-16]. These assume 
that the dendrites have a plate-like morphology and 
then perform a one-dimensional numerical analysis of 
solute redistribution between two adjacent secondary 
arms for different cooling rates. Again, these models 
cannot simulate the transient conditions in real sys- 
tems where dendrite morphology and local solidifi- 
cation conditions are continuously changing. Also, 
they are forced to employ an empirical expression to 
account for coarsening. 

In order to improve the accuracy of the predictions 
of macro-heat-transfer models of solidification and to 
enhance microscopic predictive capabilities, better 
models of columnar-dendrite evolution are necessary 
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which try to simulate the actual manner of evolution 
of the dendrite array.  

There have recently been a number of attempts, 
employing different modelling procedures, at simula- 
ting the complex interactions governing the evolution 
of dendrites. Some of these have investigated the quali- 
tative modelling of pattern formation during dendritic 
growth using either aggregation-type models [17, 18] 
or cellular automata [19, 20]. Others have attempted to 
produce quantitative models of branched dendrites us- 
ing phase-field techniques [21] or mixed numerical/ 
empirical approaches [22]. Most of these models have 
considered the free growth of equiaxed crystals, usually 
of pure materials, into an undercooled melt. Lu and 
Hunt r23J have developed a wholly numerical model of 
unbranched (no secondary or higher order branches) 
cellular and dendritic columnar growth for the predic- 
tion of cell and primary dendrite arm spacings. 

The object of this paper is to describe a cellular 
automaton model of columnar-dendritic growth, de- 
veloped for the purpose of beginning to investigate 
dendrite evolution as a function of alloy parameters 
and processing conditions. 

2. A two-dimensional cellular automaton 
model of steady-state columnar-dendritic 
growth in binary alloys 

The model is based on the authors' previous experi- 
ence of developing cellular automata models 
of "free" dendritic growth [19, 20]. The model oper- 
ates within a regular two-dimensional lattice of 
square-shaped cells. The lattice domain is rectangular 
in shape and contains 5425 cells (31 x 175). Each cell 
can be identified by one or more variable(s) (in the 
present instance temperature and composition) and by 
the state of the cell, namely, primary phase, eutectic or 
liquid. Growth is initiated from a seed of three cells 
width, placed centrally along the edge at one end of 



Figure 2 Cellular automata simuiations of steady-state dendritic growth for alloys containing (a, b) 0.04% solute, and (c, d) 0.10% solute, 
using the same growth rate and temperature gradient as in Fig. 1. 

the rectangle. The long edges of the rectangle are 
treated as being periodic, i.e. in contact with each other. 

A hypothetical binary eutectic system was exam- 
ined and it was assumed that the liquidus and solidus 
lines were straight. The phase diagram characteristics 
at the solvent end were assumed to be as follows; 
melting point of solvent 933 K, eutectic temperature 
840 K, partition coefficient, k, 0.18, and liquidus slope, 
m, 650. Steady-state columnar growth was achieved by 
moving a linear temperature field along the domain in 
steps. When advancing the temperature field, the line 
of cells lying two cells ahead of the leading dendrite tip 
was set to the equilibrium liquidus value for the initial 
alloy composition under investigation. 

Within each temperature-field advancement step 
the following routines are performed. All liquid sites 
are checked to determine whether they satisfy the 
necessary conditions to freeze. For growth to occur, 
a cell must have >~ 3 solid nearest neighbours, where 

each cell has 8 nearest neighbours, and be at a temper- 
ature below the liquidus temperature for the cell com- 
position. If a cell freezes, its solid composition for its 
temperature is calculated and the solute rejected is 
apportioned uniformly to all its nearest neighbour 
liquid cells. If the temperature of a cell is less than or 
equal to the eutectic temperature, the cell will solidify 
automatically and with no rejection of solute. Follow- 
ing growth and solute rejection, solute diffusion in the 
liquid was simulated by averaging the composition of 
each liquid cell with all of its surrounding nearest 
neighbour liquid cells and then moving the cell com- 
position in the direction of the average value by an 
amount determined by an assumed coefficient. No 
solute diffusion was permitted in the solid. Solute 
rejected on freezing and solute transported by diffu- 
sion is not allowed to enter cells ahead of the line of 
cells corresponding to the position of the leading den- 
drite tip. 
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Figure 3 Cellular automata simulations of steady-state dendritic growth for a temperature gradient (a, b) higher and (c, d) lower than in 
Fig, 1, but with the same alloy composition and growth rate. 

Simulation of the possible effects of increasing 
dendrite growth rate, on dendrite evolution and 
solute redistribution during freezing, was achieved 
by varying the number of iterations, n, of the com- 
bined growth, solute rejection and solute diffusion 
routines conducted within each temperature-field 
advancement step. It was arbitrarily assumed that 
a smaller number of iterations would correspond to 
a higher tip-growth rate. In a real system, the faster 
the rate of advancement of the columnar dendrite 
tip the less time would be available for solute diffu- 
sion in the interdendritic liquid regions. 

Alloy compositions and temperature fields were 
selected that enabled the temperature within the do- 
main to fall to the eutectic temperature and which 
provided sufficient distance within the domain length 
for the establishment of a steady-state freezing 
condition. 

3. Model simulations 
The above model has been used to provide an insight 
into the influences of alloy composition, temperature 
gradient and growth rate on the evolution of colum- 
nar-dendrites in binary alloys under steady-state 
freezing conditions. Because the cells do not corres- 
pond to an actual physical size and because no time- 
dependent equations are being solved, actual temper- 
ature gradientsand growth rates cannot be specified. 
Likewise, the arm spacings in the simulated dendrites 
cannot be measured in real dimensions. 

The results of each simulation are illustrated in 
two forms. The first illustration shows the regions of 
the domain that are liquid (black), primary dendrite 
phase (white) and eutectic (grey) at the instant when 
the dendrite tip reaches the end of the domain. The 
second provides a contour map (micrograph) of the 
solute distribution in the alloy at the same time. The 
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Figure 4 Cellular automata simulations of steady-state dendritic growth for a growth rate (a, b) higher and (c, d) lower than in Fig. 1, but with 
the same alloy composition and temperature gradient. 

dendrite core of low solute content is readily recog- 
nized. 

A reference simulation, representing an inter- 
mediate composition (0.07%), growth rate and tem- 
perature gradient, against which the individual effect 
of each of the three variables was assessed, is shown 
in Fig. 1. Temperature gradients and growth rates 
greater or less than those in Fig. 1 are simply referred 
to as high or low, respectively. 

Fig. 2a-d illustrate simulations for compositions of 
0.04% and 0.10%, respectively, for the same gradient 
and growth rate as in Fig. 1. As can be seen, with 
increasing solute content the amount  of primary phase 
in the alloy decreases, the non-equilibrium freezing 
range decreases and the dendrites are more rod-like. 
This conforms with actual observations. By compar- 
ing Fig. 2a and b, the dendrite coarsening mechanism 
by coalescence can be appreciated. This mechanism 
has been discussed by Young and Kirkwood [24], As 

growth proceeds, individual arms thicken and event- 
ually adjacent arms can coalesce with the entrapment 
of solute material previously present at the base of the 
dendrite arms. It can be seen from Fig. 2a and b that 
a tertiary arm has continued to grow as a primary, 
which is a recognized mechanism of primary spacing 
refinement. The general observations from Figs 1 and 
2 that secondary arm spacings tend to decrease and 
primary arms increase with increasing solute content, 
conforms with experimental observations [25] and 
theory [26], respectively, 

Fig. 3a-d illustrate the effect of high and low gradi- 
ents for the same composition and growth rate as in 
Fig. 1. Again we have a situation in Fig. 3a and 
b where a tertiary arm has become a primary. Again 
the finer spacings for the secondaries and primaries 
with increasing gradient conform with experiment 
[-25] and theory [26], respectively. For  the same com- 
position and growth rate, increasing the gradient will 
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decrease the local solidification time, i.e. the time 
available for secondary arm coarsening. 

Fig. 4a-d illustrate the effect of high and low 
growth rates for the same composition and gradient 
as in Fig. 1. The finer secondary arm spacing ob- 
served at the highest growth rate again conforms 
with experimental observations and also corresponds 
with a reduction in the local solidification time. The 
observations also give support to the method ad- 
opted in the model for simulating variations in 
growth rate. 

4. Discussion 
Remarkable success has been achieved, with a rela- 
tively simple cellular automaton model, in demon- 
strating many of the features of columnar (array) den- 
drites in real systems grown under steady-state condi- 
tions. The influences of composition, temperature 
gradient and growth rate on arm spacings and den- 
drite morphology agree extremely well with reported 
experimental observations and theoretical predic- 
tions. The model emphasizes the importance of the 
amount of primary phase in the alloy and the local 
solidification time on the evolving dendrite morpho- 
logy. The model illustrates secondary dendrite arm 
coarsening by coalescence (as opposed to remelting) 
which is a mechanism that a number of researchers 
have postulated. Although it is not quantitative, the 
model provides a valuable insight into the complexity 
of dendrite structure development and the problem 
associated with attempting to describe the evolution 
of the fraction solid in dendrites using analytical 
methods. The problem is further exacerbated by the 
fact that columnar dendrites in real castings grow 
under transient growth conditions. Work is at present 
proceeding to try to enhance the physics of the model 
by incorporating actual length scales and the transient 
time-dependent equation for solute diffusion. 

5. Conclusion 
A two-dimensional cellular automaton model 
has been developed to simulate steady-state colum- 
nar-dendritic growth in binary alloys. The predictions 
of the influences of composition, gradient and growth 
rate on dendrite arm spacings and morphology are in 
excellent qualitative agreement with experimental ob- 
servations and theoretical predictions. The model em- 
phasizes the importance of the further investigation of 

procedures for the simulation of microstructural 
evolution during solidification. 
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